Electrical Engineering Department
Faculty of Engineering at Shoubra Banha university

Subject: Electrical Circuit $1^{\text {st }}$ semester, 2015/2016 Sheet No. 2
(1) Determine I and Z_{T} for the circuit shown
(2) For the circuit shown calculate Z_{T} and V_{ab}
(3) Calculate the value of $Z_{a b}$ in the network shown.
(4) Determine the equivalent impedance of the circuit shown
(5) At $\omega=10^{3} \mathrm{rad} / \mathrm{s}$, find the input admittance of the circuit shown

(6) A series RLC circuit has $\mathrm{R}=2 \mathrm{k} \Omega, \mathrm{L}=40 \mathrm{mH}$, and $\mathrm{C}=1 \mu \mathrm{~F}$. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.
(7) Design a series RLC circuit that will have an impedance of 10Ω at the resonant frequency of $\omega_{0}=50 \mathrm{rad} / \mathrm{s}$ and a quality factor of 80 . Find the bandwidth.
(8) Design a series RLC circuit with $B=20 \mathrm{rad} / \mathrm{s}$ and $\omega_{0}=1000 \mathrm{rad} / \mathrm{s}$ Find the circuit's Q .

$\underline{\text { Sheet No. } 2}$

(9) For the circuit shown, find the frequency ω for which $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$ are in phase.

(10) Design a parallel resonant RLC circuit with $\omega_{0}=10 \mathrm{rad} / \mathrm{s}$ and $\mathrm{Q}=20$. Calculate the bandwidth of the circuit.
(11) A parallel resonant circuit with quality factor 120 has a resonant frequency of $6 \times 10^{6} \mathrm{rad} / \mathrm{s}$. Calculate the bandwidth and half-power frequencies.
(12) It is expected that a parallel RLC resonant circuit has an admittance of $25 \times 10^{3} \mathrm{~S}$, quality factor of 80 , and a resonant frequency of $200 \mathrm{krad} / \mathrm{s}$. Calculate the values of R, L, and C. Find the bandwidth and the half-power frequencies.
(13) For the circuit shown, find the resonant frequency.
(14) For the circuit shown, find the resonant frequency ω_{o}, the quality factor Q , and the bandwidth B .

(15) Calculate the resonant frequency of each of the circuits

(c)

