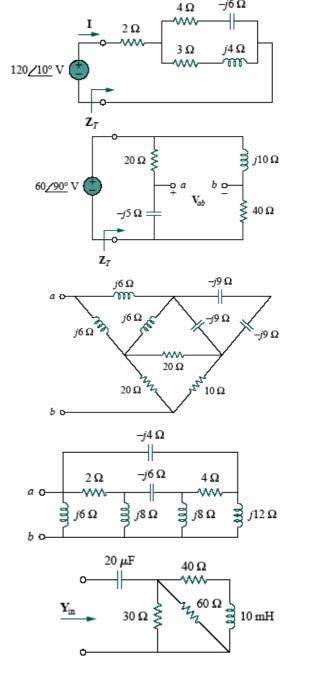
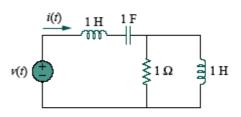

Electrical Engineering Department Faculty of Engineering at Shoubra Banha university

Subject: Electrical Circuit 1st semester, 2015/2016 Sheet No. 2

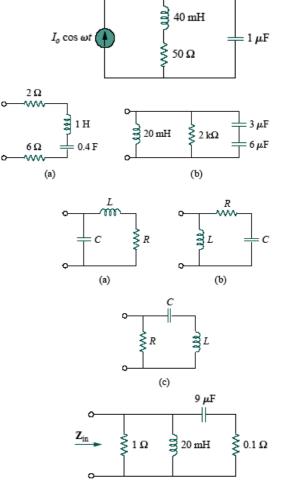

-j6 Ω

(2) For the circuit shown calculate Z_T and V_{ab}


(3) Calculate the value of Z_{ab} in the network shown.

- (4) Determine the equivalent impedance of the circuit shown
- (5) At $\omega = 10^3$ rad/s, find the input admittance of the circuit shown
- (6) A series RLC circuit has R=2k Ω , L=40 mH, and C=1 μ F. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.
- (7) Design a series RLC circuit that will have an impedance of 10Ω at the resonant frequency of ω_0 =50 rad/s and a quality factor of 80. Find the bandwidth.
- (8) Design a series RLC circuit with B=20 rad/s and ω_0 =1000 rad/s Find the circuit's Q.

Sheet No. 2


(9) For the circuit shown, find the frequency ω for which v(t) and i(t) are in phase.

(10) Design a parallel resonant RLC circuit with $\omega_0=10$ rad/s and Q=20. Calculate the bandwidth of the circuit.

- (11) A parallel resonant circuit with quality factor 120 has a resonant frequency of $6x10^6$ rad/s. Calculate the bandwidth and half-power frequencies.
- (12) It is expected that a parallel RLC resonant circuit has an admittance of 25×10^3 S, quality factor of 80, and a resonant frequency of 200 krad/s. Calculate the values of R, L, and C. Find the bandwidth and the half-power frequencies.
- (13) For the circuit shown, find the resonant frequency.
- (14) For the circuit shown, find the resonant frequency ω_o , the quality factor Q, and the bandwidth B.

(15) Calculate the resonant frequency of each of the

(16) For the circuit shown, find: (a) the resonant frequency ω_o (b) $Z_{in}(\omega)$

circuits
